

Potenzial von multispektral und SAR Daten zum Monitoring von raum-zeitlichen Landnutzungsmustern

5. gemeinsame Jahrestagung der Arbeitskreise Fernerkundung (DGfG) und Auswertung von Fernerkundungsdaten (DGPF), 28. bis 30. September, Halle/Saale

Björn Waske

Land cover classification and remote sensing

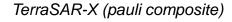
- Increased availability of (freely available) remote sensing data
- Applications become more interesting regarding recent and upcoming missions (e.g., ESAs Sentinel):
 - Increased revisit times
 - Better spectral and spatial resolutions
 - Increased availability of diverse data sets, e.g. multispectral and SAR; data sets with different spatial resolution

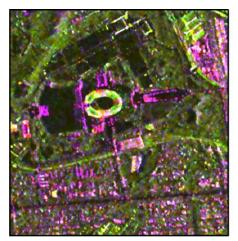
Introduction

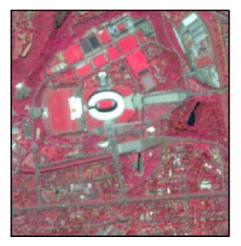
Land cover classification and remote sensing

- Evolving EO technologies together with increasing performance requirements (e.g., speed, accuracy ...)
 → increasingly improving algorithms.
- Processing power impacts pattern recognition algorithm development
 → enables faster processing of huge data sets.

Users can choose between several – widely accepted – algorithms and between a multitude of diverse remote sensing data.







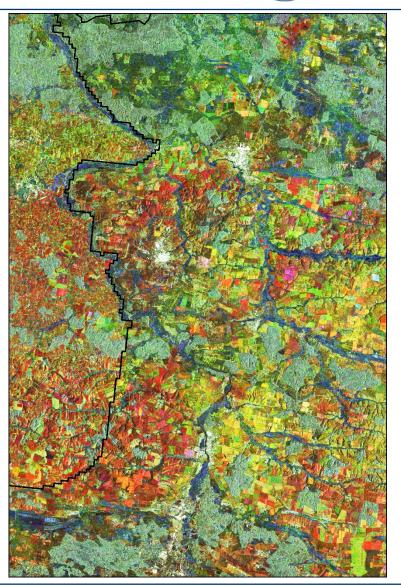
Sentinel 2

Case studies

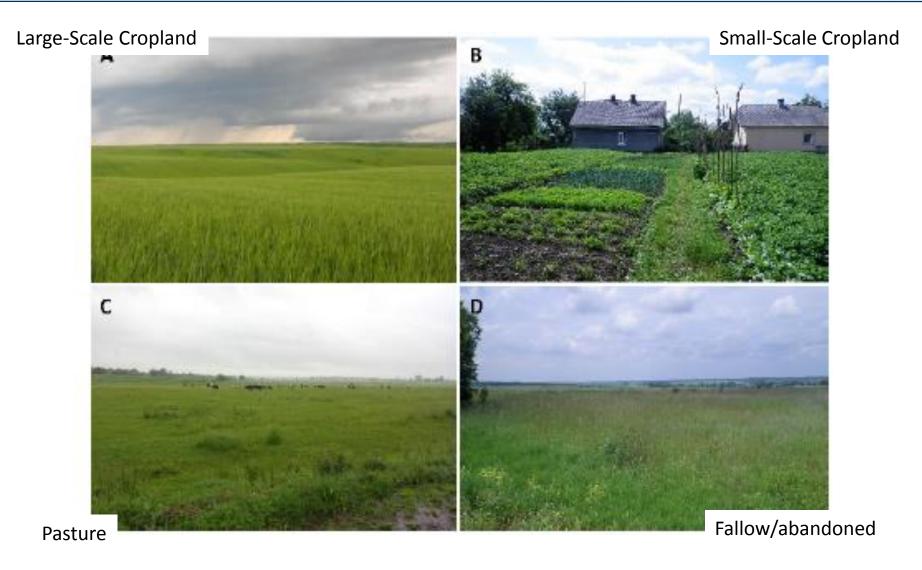
- Mapping land use and land use change in post-Soviet western Ukraine, using Landsat and ERS/Envisat ASAR data
- Mapping land use and deforestation in Brazilian Amazon, using TerraSAR-X data (and multisensor data)

Ukraine – study site

- Breakdown Soviet Union in 1991
 → significant changes in land-use management
- Industrialized and large agricultural fields
- Farmland abandonment
 → forest succession
- Large fields were converted to small field → change from intensive to extensive management



Ukraine – study site

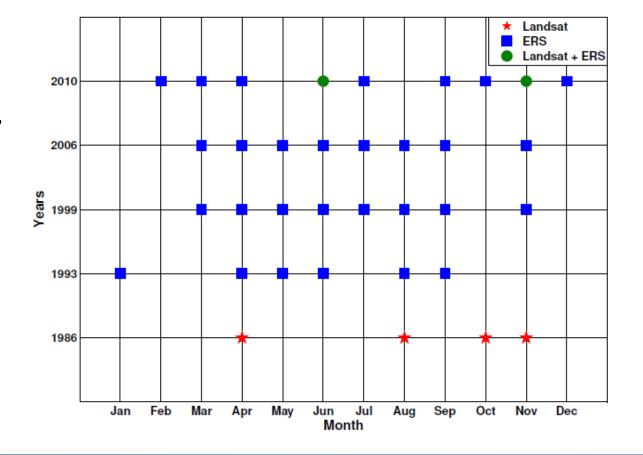


- Landsat 5 TM June / Nov. 2010 + 9 ERS-2 SAR scenes from 2010
- Random Forests, which is based on a combination of many decision trees and well suited for classifying multisensor data
- Segment-based classification, to integrate spatial information; new approach for a semi-automatic determination of the size

Ukraine – Methods & data

Data sets and methods

- Image acquisition in every season
- 6 Landsat scenes
- 31 ERS SAR scenes
- "post-classificative" change detection



Freie Universität

Berlin

Impact of different data sources on the mapping accuracy [%]

LS Classes	Landsat (pixel-based)		Landsat (object-based)		SAR+Landsat	
	PA (%)	UA (%)	PA (%)	UA (%)	PA (%)	UA (%)
LSC	51.6	70.8	85.4	89.0	85.1	89.7
SSC	73.2	43.3	92.5	56.3	91.8	71.4
Pasture	56.5	55.0	74.3	56.6	62.5	65.9
Fallow	67.3	69.4	58.0	81.9	74.0	79.2
Forest	96.8	95.1	92.3	96.1	94.1	96.2
Urban	54.5	76.9	29.5	77.8	63.2	80.0
OA	67.4%		78.3%		83.4%	

(Stefanksi et al. 2013)

Ukraine – Results

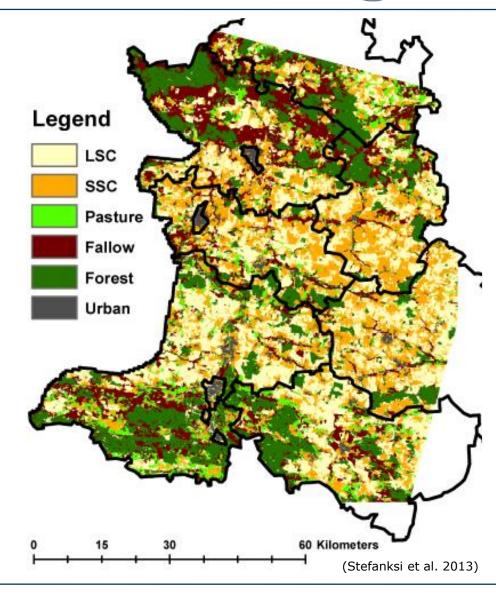
Freie Universität

Land use management 2010

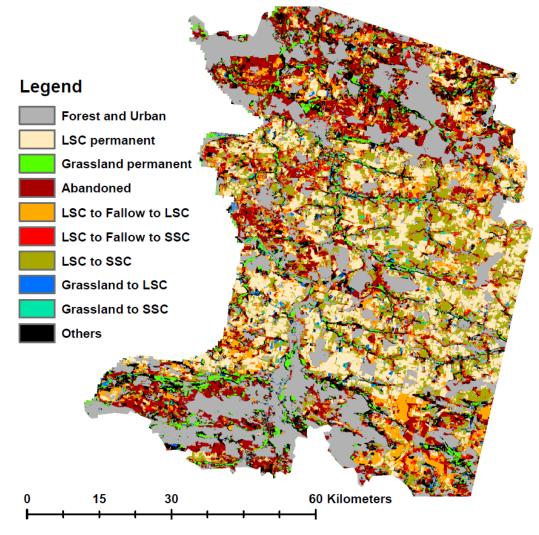
The use of ...

- (1) multisensor data
 (→ fallow vs. pasture)
- (2) spatial information
 (→ large-scale vs. small-scale agriculture)

proved useful in terms of the mapping accuracy



Ukraine – Results



Changes in land use management between 1986 and 2010

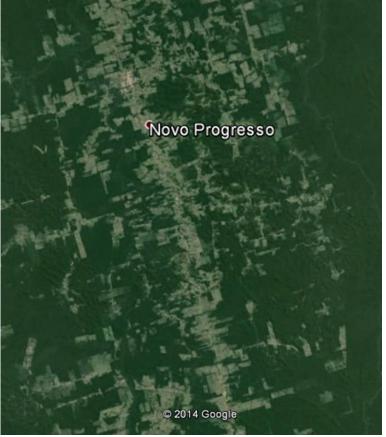
- Cropland abandonment: ~18%
- Recultivation: ~17%
- ~25% permanently cultivated with large-scale cropland
- ~18% of large-scale cropland was transformed into smallscale cropland

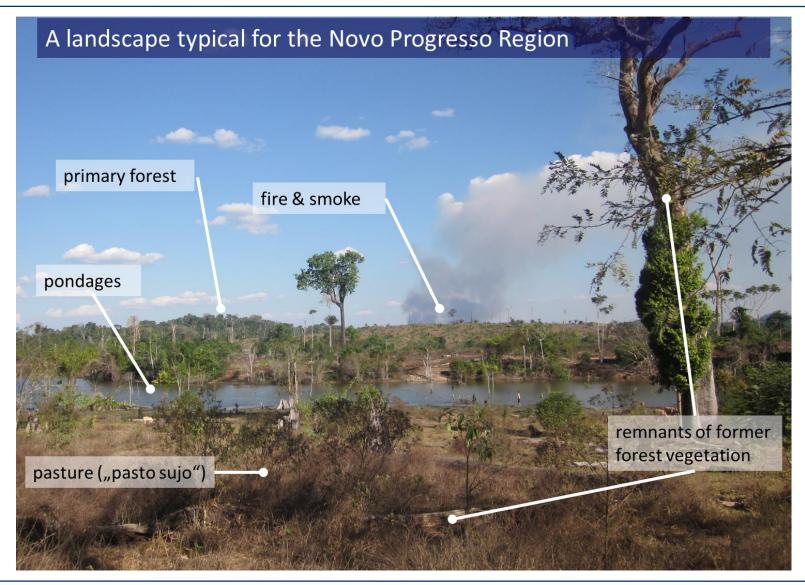
(Stefanksi et al. 2014)

SenseCarbon*

- Novo Progresso municipality (southern Pará, Brazil), close to the BR-163 highway
- Mapping forest degradation and deforestation in Brazil
- Based on the ESAs Sentinel missions (Sentinel-1 and Sentinel-2), their synergies among each other, and synergies with other systems (e.g. TerraSAR-X)

*funded by DLR / BMWi FKZ 50EE0917





- The study area is temporally highly variable
 → land use land cover may have changed during the acquisitions
 - → stacking all data into one single data set results in one single map and is inadequate
 - → classify each single scene, by using information from all other scenes
- 5 TerraSAR-X images (June to September 2014) with different polarizations were used

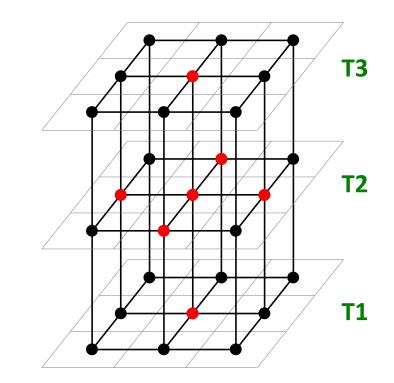
Land use and land cover classes

- Clean Pasture, also called pasto limpo: pasture land that is intensively managed; including includes tillage and burning of land to support cattle ranching.
- *Shrubby Pasture*, also called *pasto sujo*: not intensively managed and thus affected by bush encroachment.
- **Burnt Pasture,** includes recently burned clean and shrubby pasture tation residues.
- Forest/Secondary Vegetation

• Water

Markov Random Fields

- MRF can be used to optimize land cover maps by spatial-temporal interactions between neighboring pixels
- Usually all interactions in space and time are equally weighted (using a so-called Potts model) → similar classes are more likely than different classes



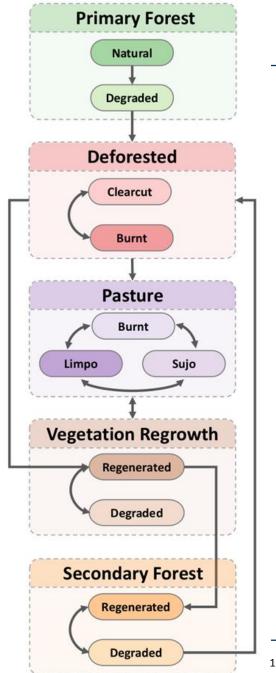
Freie Universität

Berlin

Markov Random Fields

However, the relationship between classes can be different, e.g. a forest pixel can be deforested a few weeks later, while it is very unlikely that a reforestation process last only a few weeks

\rightarrow We integrate expert knowledge in the Markov Random Field



Markov Random Fields

• We integrate expert knowledge in the Markov Random Field

$$U(Y|X) = -\sum_{i \in I} \ln p(x_i|y_i) + \beta \sum_{i_s \sim J_s} [1 - \delta_s(y_{i_s}, y_{j_s})] + T \sum_{i_t \sim J_t} [1 - \delta_t(y_{i_t}, y_{j_t})]$$

weights for **spatial neighborhoods**: symmetric, given by spatial resolution Typicial model (1/0), so-called Pott's model δ (forest, forest) = 1

```
\delta(\text{forest, forest}) = 1
\delta(\text{forest, pasture}) = 0
\delta(\text{pasture, pasture}) = 1
```

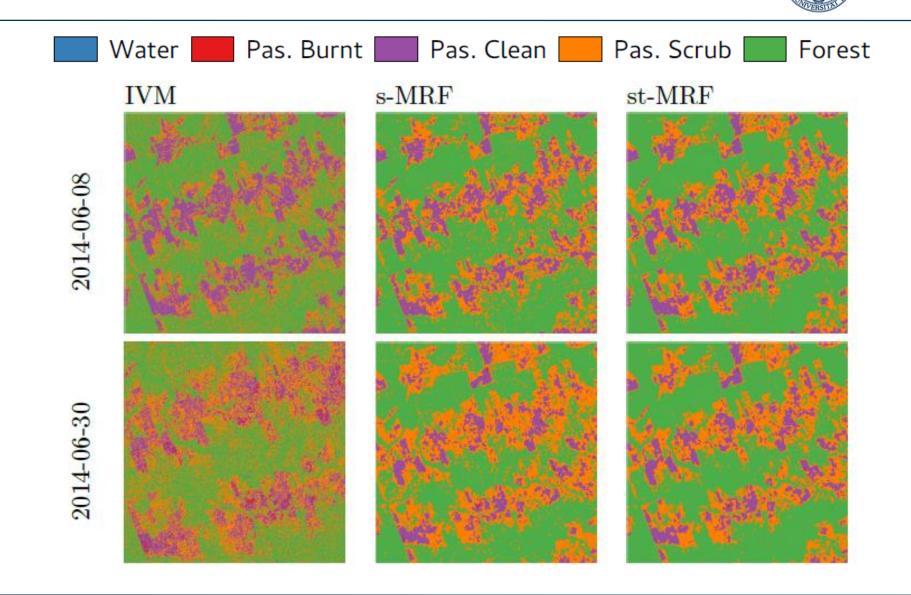
```
\delta(pasture, forest) = 0
```

weights for **temporal neighborhoods**: depending on time between acquisitions dates, class-specific, non symmetric, e.g.:

Example: δ (Forest, Forest) = 1 δ (Forest, Pasture) = 0.5 δ (Pasture, Forest) = 0.1

Brazil – Results

Freie Universität

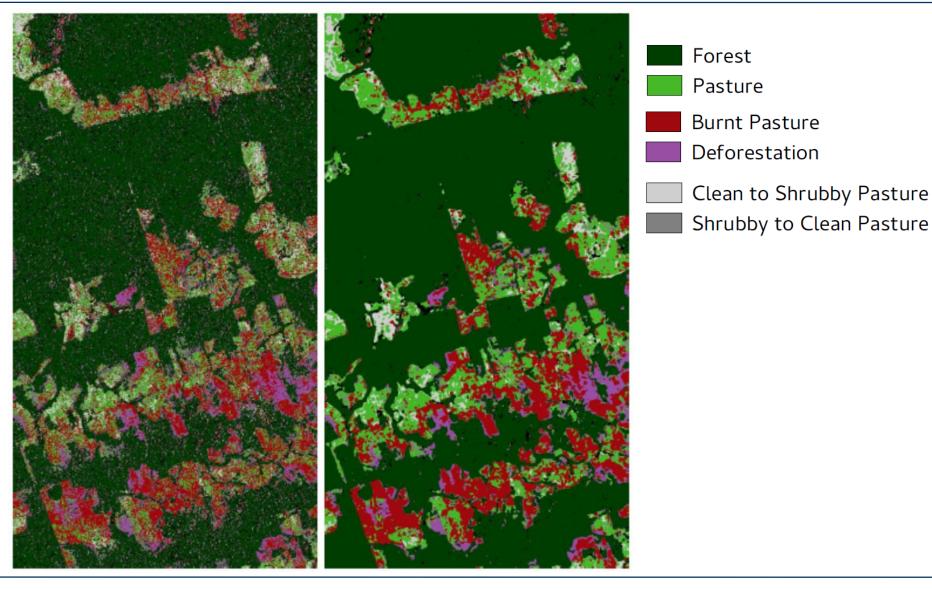


Accuracy assessment

- Integration of spatial information by MRF improves classification results
- The proposed approach, a spatial-temporal MRF, results in the highest classification accuracies
- Visual assessment underlines these findings → typical random noise is considerably reduced

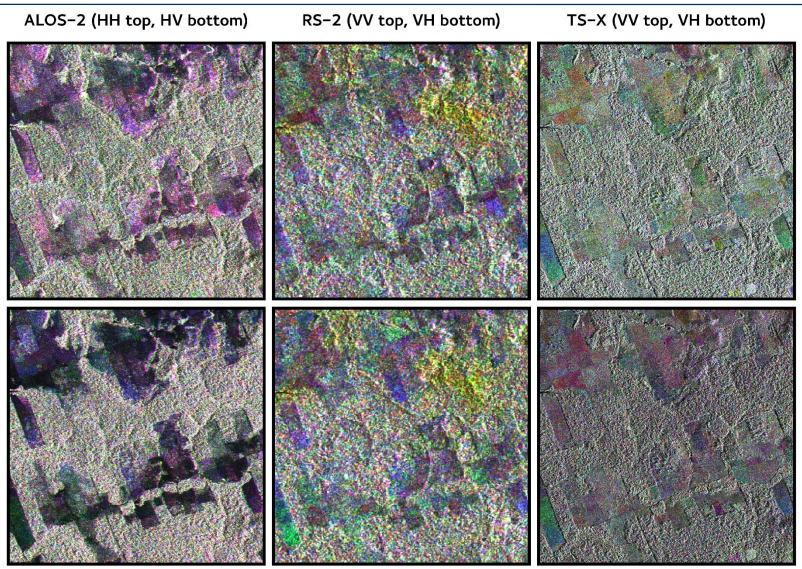
Acquisition Date	IVM	s-MRF	$\operatorname{st-MRF}$
2014-06-08	0.65	0.75	0.77
2014-06-30	0.60	0.69	0.79
2014-07-22	0.66	0.76	0.78
2014-08-24	0.69	0.74	0.76
2014-09-04	0.68	0.77	0.78

Brazil – Results

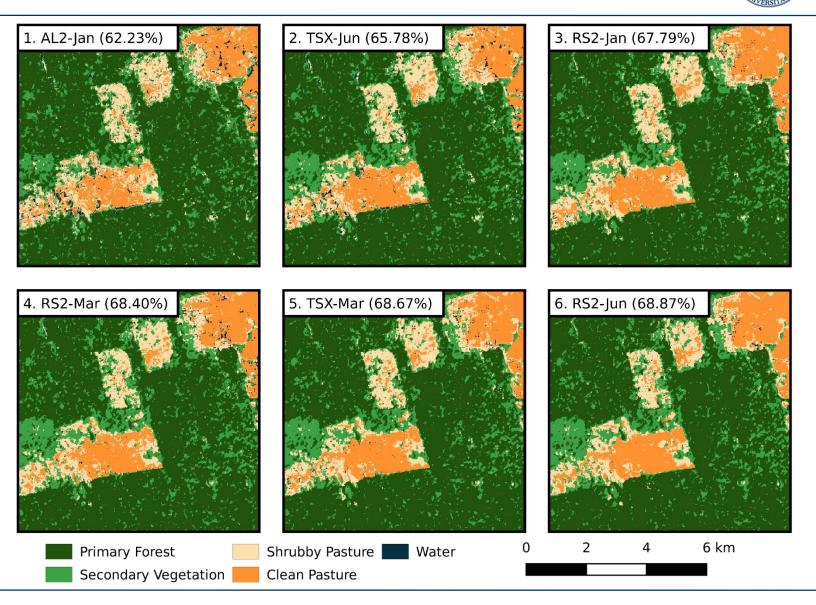


- In general an adequate classification strategy, is useful in terms of mapping accuracies
- Coupling machine learning / pattern recognition with geographical expert knowledge improves the mapping accuracies
- The proposed approach:
 - appears very well suited for mapping dynamic land use and land cover, using multitemporal SAR data
 - − is based on probabilities \rightarrow multisensor data

Case study - Brazil



Case study - Brazil



Freie Universität

Berlin

Outlook

- Multisensor remote sensing data
 - provide different but complementary information
 - can fill gaps in time series

and proofs useful in terms of mapping accuracy

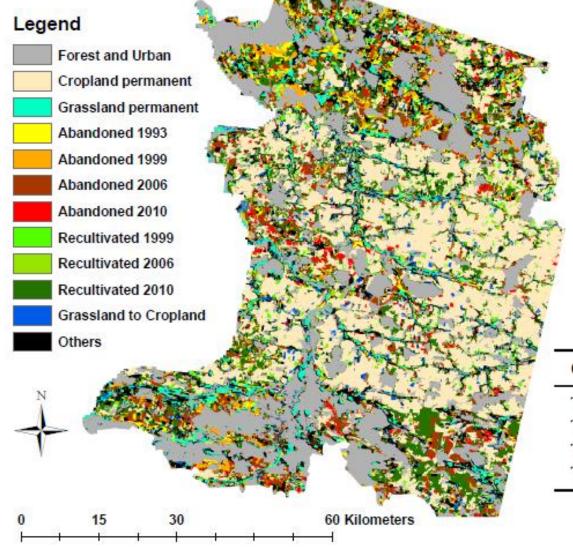
- Upcoming missions such as ESAs Sentinel missions offer great potentials
- However,
 - these data sets, and
 - recent applications and performance requirements
 demand increasingly improving algorithms
- Thus, the development of adequate methods for multisensor image analysis is an ongoing research topic

Sentinel 1 (jun-jul-aug 2015)

Thank you for your attention

Sentinel 2 (8-4-3)

Case study - Ukraine



Change analysis 1986-2010

Change estimation	[%] 11.1	
Total abandonment 1993		
Total abandonment 1999	13.7	
Total abandonment 2006	30.6	
Total abandonment 2010	19.7	

(Stefanksi et al. 2014)

Methods:

Import Vector Machines

- IVM (Zhu & Hastie 2005) are based on Logistic Regression and Kernel Logistic Regression
- Use only a subsets of samples (sparseness), whereas SVM (and Kernel Logistic Regression) use all samples
- Whereas SVM maximize the margin, IVM are aiming on the optimization of the probabilities and thus, directly provide class probabilities