

Simulating Impacts of Regional Planning on Land Consumption Patterns

using an Automated Retrospective Classification Approach and a Scenario-based Urban Growth Simulation Model in Western Germany from 1985-2030

Andreas Rienow, Lakshmi N. Kantakumar, Gohar Ghazaryan, Arne Dröge-Rothaar, Sarah Sticksel, Birte Trampnau, Frank Thonfeld Geographisches Institut, Ruhr-Universität Bochum andreas.rienow@rub.de

- 1. Monitoring of land consumption 1985-2020 based on automated retrospective classification
- 2. Provision of old at a cfollo local aluab thio pitty a stance the risk enders
- 3. Propaedeutic training of action taking for climate adaptation (young adults)
- 4. Scenario-lassed, spaitilally exiplicits inatilation who growth growth 2030

Study area

North Rhine-Wes

Data preprocessin

- Landsat cloud ma
- mosaicking
- index calculation
- calculation of ten

Estimation of impe

 random forest (R Topographic-Car

Land use classifica

- RF classification (! composites
- Input for 2017 S
- Input for former y

Ghazaryan et al. (2021)

Classification Results 2017

Year	OA	PA for Low, Middle, and High Imperviousness Class	UA for Low, Middle, and High Imperviousness Class	Accuracies for Aggregated Urban Area		Accuracies for Aggregated Non-Urban Areas	
				PA	UA	PA	UA
2017	89.0%	89.3 90.5 94.4	89.4 90.5 94.4	96.3	93.04	92.7	96.2
2015	87.0%	77.9 93.9 90.1	81.5 90.7 90.1	94.6	91.3	90.9	94.7
2010	80.0%	62.9 77.9 90.5	69.3 83.2 87.5	93.1	90.7	91.2	92.3
2005	79.1%	82.9 76.2 89.9	78.2 92.4 82.6	94.8	92.1	94.6	96.7
2000	80.2%	63.1 78.1 90.2	69.1 83.5 87.8	93.1	96	96.2	93.3
1990	75.3%	54.9 67.6 90.1	65.1 79.7 80.8	91.3	95.8	95.8	91.4
1985	77.3%	61.1 69.8 87.4	74.5 75.7 82.9	87.7	95.9	96.1	88.3

Ghazaryan et al. (2021)

Ghazaryan et al. (2021)

Sankey plot for land-use changes observed

Changes in imperviousness level

SUSM: a scenario-based urban growth simulation model using remote sensing data

- Input data module processes the user-supplied data, urban extent maps, digital elevation maps and transportation networks
- **2. Scenario development module** facilitates the development of future urban development scenarios
- Transition potential module estimates the suitability of non-urban pixel to be transformed into urban by weighting the site-specific urban growth driving factors
- **4. Allocation module** is responsible for estimating area of future urban growth and simulating the urban growth
- **5. Validation module** assesses the simulation capability of SUSM

#GeoWoche2021

Validation

Simulated Urban	Observed Urban growth					
growth	2005-2010		2005-2017			
	Urban	Non-Urban	Urban	Non-Urban		
Urban	$H = 77.89 \text{ km}^2$	$FA = 86.31 \text{ km}^2$	H = 229.46	FA = 110.08		
			km²	km²		
Non-Urban	$M = 86.80 \text{ km}^2$	CR = 7392.15	M = 107.70	CR = 7195.91		
		km²	km²	km²		
Validation Metric	Score	95% C.I.	Score	95% C.I.		
Producer's accuracy	47.30%	[36.61%,	68.06%	[59.30%,		
(Sensitivity)		57.99%]		76.82%]		
User's accuracy	47.44%	[39.50%,	67.58%	[62.46%,		
(Precision)		55.39%]		72.71%]		
Overall accuracy	97.74%	[97.4%, 98.08%]	97.15%	[96.78%,		
C:C-:4 (T	00.050/	F00 60/ 00 100/1	00.400/	97.54%]		
Specificity (True	98.85%	[98.6%, 99.10%]	98.49%	[98.21%, 98.78%]		
negative rate) Matthews correlation	0.46		0.66	98./870]		
coefficient	0.40		0.00			
Figure of fit	0.31		0.51			
AUC	0.76		0.84			

Rienow et al. (submitted)

r tted)

SUSM and BBSR comparison

Rienow et al. (submitted)

Climate Change Prevention Strategy

Planning Information map: Climate change prevention strategy

Rhine-Ruhr metropolitan region: Rhine Area

Rienow et al. (submitted)

#GeoWoche2021

Future land consumption compared to population growth

Rienow, A., Kantakumar, L.N., Ghazaryan, G., Dröge-Rothaar, A., Sticksel, S., Trampnau, B., Thonfeld, F. (submitted): Modelling the spatial impact of regional planning and climate change prevention strategies on land consumption in the Rhine-Ruhr Metropolitan Area 2017-2030. Landscape and Urban Planning.

Rienow et al. (submitted)

11

#GeoWoche2021

Urban growth in climate change prevention strategy categories 2030

Rienow et al. (submitted)

12

Rienow (submitted)

Rienow (Submitted)					
Туре	Count				
Good Practice Examples					
Water bodies	6				
Trees	72				
Meadows	40				
Vertical green	32				
Reduced traffic	3				
Green island	19				
Other	27				
Need for Action					
Too hot	61				
Too sunny	26				
Too dry	33				
Too wet	4				
Too stuffy	6				
Other	19				
Ideas					
Suggestions	42				

e.g. solar panels, green roof, "Grüne Insel", trees, wild flower meadow

Crowd mapping of climate change adaptation

Urban growth 2030, LST development and crowd mapped thermal stress

Rienow et al. (submitted)

What's next?

- Organisation of exchange events between authorities and citizens
- Implementation of the full framework in GEE
- Model optimisation & integration of additional datasets (e.g. Nighttime Lights)

Thank you very much!

Mobilization of Cit(ies)zens – Educating "In-Betweeners"

Classification (Remap), Interpolation of precipitation (ArcGIS), surface temperature measurement (Climate Engine), Urban LUCC Modeling (XULU/ SLEUTH)

#GeoWoche2021

17

city

Mobilization of Cit(ies)zens – Educating "In-Betweeners" Field trip, design-thinkingmethod, creating a sustainable

WILA Bonn e.V., (Eds.) (2020): Handlungsleitfaden. Bonn. http://klimalandschaftennrw.de/images/Leitfaden_Gute_Ideen_gegen_den_Klima wandel_KLIMNET_web.pdf

